Model Context Protocol: The Ultimate Explanation for Business Leaders

Model Context Protocol Clearly Explained
By Julia Gavrilova ·
10/9/2025
·
4 min. read

In this article

As AI becomes part of everything—from customer service to logistics—the real challenge isn’t just building smarter models. It’s getting them to work together.

According to Alex Fillimonov, Product Owner of AI Projects at Albato, the future of AI isn’t about standalone tools, but about how well they connect and integrate.

“In most enterprises, AI systems are still stitched together with custom scripts, brittle APIs, and siloed tools,” he explains. “That approach worked when AI was experimental. But now, it’s mission-critical—and it has to scale.”

That’s where MCP (Model Context Protocol) comes in. It marks a shift toward unified orchestration, where models, tools, and data sources can collaborate through a single, shared protocol.

In this article, together with Alex, we’ll explore how MCP can become the backbone of enterprise AI—and why now is the time to adopt it.

 
 

What is MCP in simple terms?

A Model Context Protocol (MCP) is like a universal connector between AI models like ChatGPT or Grok and your business tools or data.

You can think of it as similar to an API, but easier and more flexible.

  • An API connects one system to another with specific code.
  • An MCP lets the AI connect to many systems in a standard way — without custom coding each time.

So instead of building a new integration every time you want AI to use your CRM, database, or email system, MCP makes it plug-and-play.

It’s convenient because:

  • You can link your tools once, and any AI that supports MCP can use them.
  • It saves development time and cost.
  • It keeps data secure — the AI only sees what you allow through the protocol.

In short: MCP is a smarter, more flexible version of an API, made for AI. It makes it easy for AI to work with your existing business systems safely and quickly.

This might sound like MCPs are going to make all integration platforms redundant, which is not a good news for many companies out there. But the truth is: MCP helps AI connect to data and tools, but it doesn’t replace the automation, workflow management, and data transformation that iPaaS provides.

MCP is about access—giving AI models a way to understand and use connected systems. iPaaS is about orchestration—moving data between systems, keeping everything in sync, and managing complex business logic.

In fact, MCP makes iPaaS more valuable: integration platforms can expose their connected apps through MCP, so AI can use them instantly.

Backround
Guide

Guide by Albato Embedded

Top 10 Mistakes B2B SaaS Startups Make — And How to Avoid Them

Download

Download

Device

How Model Context Protocol works

We have already explained more about how MCP works and what it consists of in this blog about Model Context Protocol.

But briefly here's how MCP helps connect AI models and AI agents with tools and data.

MCP uses a client–server model, just like an API.

  • The client is the AI model (for example, ChatGPT or Grok).

  • The server is any system or app that provides data or actions — like your CRM or database.

When the AI needs information, it sends a request to the MCP server. The server replies with the needed data or performs an action.

But there are also differences from and API:

  • MCP is built specifically for AI models, not for human developers.

  • It uses a standard, open format that lets any AI understand any MCP-enabled service without custom coding.

  • It focuses on context sharing — giving AI the right data safely and efficiently during a conversation or task.

 
 

Why MCP is emerging now

The Model Context Protocol (MCP) is gaining attention because AI systems are shifting from isolated models to agents that can talk to each other and work together behind the scene. This shift requires a shared standard for how models exchange context, not just prompts.

As companies begin to deploy multiple AI agents that need to work together — for example, a CRM assistant pulling data from Gmail or a research agent updating a company knowledge base — fragmented integrations become costly. Without a standardized protocol, every connection turns into a custom engineering project, slowing down innovation.

In this sense, MCP is to AI agents what HTTP was to the web: an interoperability layer. It enables a future where different models and tools can seamlessly integrate without requiring manual glue code. For developers, it means faster prototyping and cleaner architectures, for users―smarter, more consistent AI experiences across platforms.

 
 

What are the key benefits of MCP?

 
  1. Faster AI adoption
    MCP makes it easy to connect AI models to existing business systems without custom development. Companies can start using AI with their tools—CRM, ERP, analytics, etc.—much faster.

  2. Lower integration costs
    Because MCP uses a standard format, one connection can work across multiple AI models. Businesses save time and money compared to building separate APIs for each use case.

  3. Secure data access
    MCP only shares the data the company allows. That means AI can use business data safely, without exposing sensitive information.

  4. Better automation and insight
    By linking AI directly to real business data, MCP lets models analyze information, trigger workflows, and assist in decision-making — improving efficiency and accuracy.

  5. Future-ready flexibility
    As more AI tools support MCP, businesses won’t need to rebuild integrations. They can switch or add AI models easily, keeping systems compatible and scalable.

 
 

Do you need to implement MCP for your integrations?

Gartner predicts that by 2026, 40% of enterprises will have formalized multi-model AI strategies to improve agility and resilience. MCPs are the infrastructure layer that will make this feasible.

We're entering an era where the AI stack must resemble the cloud-native stack: composable, portable, and intelligent by design. Check out our state of integrations report for more insights.

 
 

Summing up

AI agents and automation are transforming the way businesses operate. With tools like MCP, companies can connect multiple AI agents, access real-time data, and make smarter decisions faster. This approach reduces complexity, saves time, and enables teams to focus on higher-value work rather than manual tasks.

If you’re ready to see what AI can do for your team, now is the perfect time to dive deeper into AI automation and connected AI tools.

Read more:


Julia Gavrilova
Content Strategist at Albato
All articles by the Julia Gavrilova
Writes about artificial intelligence, SaaS, and tech for 8+ years. In her free time, enjoys reading good books and trying out new foods.

Join our newsletter

Hand-picked content and zero spam!

Related articles

Show more
5 Ways to Automate Claude with Albato
4 min. read

5 Ways to Automate Claude with Albato

In this article, you will learn five practical ways to connect and automate Claude AI with Albato. Learn how to boost workflows, integrate apps, and streamline business tasks.

5 Best No-Code Web Scrapers For Online Businesses
6 min. read

5 Best No-Code Web Scrapers For Online Businesses

Discover 5 top no-code web scrapers for online businesses. Automate competitor tracking, SEO monitoring, and market research without coding.

State of Integrations Report 2025: Key Trends and Strategic Insights
5 min. read

State of Integrations Report 2025: Key Trends and Strategic Insights

In this report, you will learn about the 2025 state of integrations in 2025 with data, trends, and recommendations. Learn how businesses can leverage integrations to boost efficiency and stay competitive.

Zapier vs. Make vs Albato: Full Comparison
6 min. read

Zapier vs. Make vs Albato: Full Comparison

In this article, you will learn how Zapier, Make, and Albato compare to each other to see which SaaS automation platform suits your needs. Explore capabilities, pricing, features, and use cases.

How to Connect Power BI to Albato
5 min. read

How to Connect Power BI to Albato

Connect Power BI with Albato to integrate it with over 1000+ apps, including AI tools like ChatGPT and Gemini.

Our Automation Builder Has Just Leveled Up
3 min. read

Our Automation Builder Has Just Leveled Up

Explore what’s new in Albato: features, apps, and improvements

Best Accounting Apps to Manage Your Business Finances
7 min. read

Best Accounting Apps to Manage Your Business Finances

In this article, you will learn about the top accounting apps like Sage, QuickBooks, Zoho Books, and more to simplify bookkeeping, automate workflows, and grow your business.

How to Connect LinkDeal to Albato
3 min. read

How to Connect LinkDeal to Albato

Connect LinkDeal with Albato to integrate it with over 800+ apps, including AI tools like Grok and Gemini.

How to Connect Workday to Albato
5 min. read

How to Connect Workday to Albato

Connect Workday with Albato to integrate it with over 1000+ apps, including AI tools like Grok and Claude.

How to Connect DeepL to Albato
5 min. read

How to Connect DeepL to Albato

Connect DeepL with Albato to integrate it with over 1000+ apps.

How to Connect Mobilo to Albato
5 min. read

How to Connect Mobilo to Albato

Connect Mobilo with Albato to integrate it with over 1000+ apps, including AI tools like Grok and Claude.

How to Connect Utalk to Albato
5 min. read

How to Connect Utalk to Albato

Connect Utalk with Albato to integrate it with over 1000+ apps, including AI tools like Grok and Claude.